añadido el script para entrenar con pytorch

This commit is contained in:
2025-07-21 16:57:20 -03:00
parent 4804653f0c
commit ef30f09426

107
entrenar.py Normal file
View File

@@ -0,0 +1,107 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=32, shuffle=True)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = DataLoader(testset, batch_size=32, shuffle=False)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(128 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 10)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = self.pool(self.relu(self.conv1(x))) # 32x32 -> 16x16
x = self.pool(self.relu(self.conv2(x))) # 16x16 -> 8x8
x = x.view(-1, 128 * 8 * 8) # Aplanar
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)
print("Entrenando...")
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 200 == 199:
print(f'Época [{epoch + 1}], Paso [{i + 1}], Pérdida: {running_loss / 200:.3f}')
running_loss = 0.0
print("Entrenamiento terminado.")
correct = 0
total = 0
net.eval()
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Precisión del modelo en el conjunto de prueba: {100 * correct / total:.2f}%')
def imshow(img):
img = img / 2 + 0.5 # Desnormalizar
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
dataiter = iter(testloader)
images, labels = next(dataiter)
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
imshow(torchvision.utils.make_grid(images.cpu()))
print('Verdaderos: ', ' '.join(f'{classes[labels[j]]}' for j in range(4)))
print('Predichos: ', ' '.join(f'{classes[predicted[j]]}' for j in range(4)))
torch.save(net.state_dict(), 'modelo_cifar10.pth')
print("Modelo guardado como 'modelo_cifar10.pth'")