import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=32, shuffle=True) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=32, shuffle=False) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.conv2 = nn.Conv2d(64, 128, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(128 * 8 * 8, 512) self.fc2 = nn.Linear(512, 10) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.5) def forward(self, x): x = self.pool(self.relu(self.conv1(x))) # 32x32 -> 16x16 x = self.pool(self.relu(self.conv2(x))) # 16x16 -> 8x8 x = x.view(-1, 128 * 8 * 8) # Aplanar x = self.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net.to(device) print("Entrenando...") for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: print(f'Época [{epoch + 1}], Paso [{i + 1}], Pérdida: {running_loss / 200:.3f}') running_loss = 0.0 print("Entrenamiento terminado.") correct = 0 total = 0 net.eval() with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'Precisión del modelo en el conjunto de prueba: {100 * correct / total:.2f}%') def imshow(img): img = img / 2 + 0.5 # Desnormalizar npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() dataiter = iter(testloader) images, labels = next(dataiter) images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs, 1) imshow(torchvision.utils.make_grid(images.cpu())) print('Verdaderos: ', ' '.join(f'{classes[labels[j]]}' for j in range(4))) print('Predichos: ', ' '.join(f'{classes[predicted[j]]}' for j in range(4))) torch.save(net.state_dict(), 'modelo_cifar10.pth') print("Modelo guardado como 'modelo_cifar10.pth'")